
Cooperating Applications through Tcl/Tk and DCE

David Richardson

normanb@citi.umich.edu

Center For Information Technology Integration

University of Michigan

ABSTRACT

By integrating some aspects of Tcl/Tk with the Open Software Foundation’s Distributed

Computing Environment, it should be possible to create a framework for cooperating desktop

applications. This paper proposes to create such a framework through two steps: by modifying the

Distributed Computing Environment RPC compiler to automate development of Tcl/Tk interfaces

and by creating a ‘‘Session Manager’’ which coordinates inter-application communication.

Introduction

At the University of Michigan’s Center for Infor-

mation Technology Integration (CITI), we are develop-

ing distributed computing infrastructure and applica-

tions. For the past two years, this development has

included working with the Open Software Foundation’s

(OSF) Distributed Computing Environment (DCE).

The DCE is a large, complex system, offering a wide

variety of services and interfaces. As with many large

systems, developing with the DCE can be a complex

and tedious task. It should be possible to simplify this

task by integrating some aspects of Tcl/Tk with the

DCE. Leveraging off of the rapid development possible

with Tcl/Tk, and the distributed services provided by

the DCE, it should be possible to develop a new family

of applications. These applications would be character-

ized by their ability to cooperate in a distributed

environment.

DCE Background

The Distributed Computing Environment (DCE)

is a collection of services designed to simplify the

development of distributed and cooperating applications

in a heterogeneous environment. It consists of a thread

package; an RPC facility; a security service; a cell-wide

abstract name space, the Cell Directory Service (CDS);

a global name space, the Global Directory Service

(GDS); and a suite of services comprising a distributed

file system (DFS). It is possible to use these services to

create different types of applications, with client-server

and peer-to-peer the most popular. A typical DCE

server takes advantage of the name space services to

ease the burden on the client. The server registers itself

at a well known name, in a manner independent of its

physical location. A client looks up the name for the

service it is interested in, and is given a binding which

can be used to contact a server. Because name space

entries can be augmented with various attributes, it is

possible for the client to pick and choose which instance

of a possibly replicated service would best fit its needs.

A Framework for Cooperating Applications

I am interested in creating a framework for

cooperating desktop applications. This framework

should simplify the task of allowing applications to

communicate with each other in a reliable, secure

manner. Applications should not be constrained by

Tk’s current implementation of send, which limits

communication to applications that are attached to the

same X display. Users interested in cooperative work

should be able to communicate without needing to

know each other’s physical location. The framework

should also make it easier for applications to request

general services, without having to know a particular

user’s preferences for that service. This paper proposes

one possibility for such a framework. The framework

includes two major components: the DCE RPC com-

piler should be modified to generate Tcl wrappers for a

subset of RPC interfaces, and a ‘‘Session Manager’’

should be created that manages the desktop name space

and provides a clearinghouse for inter-application com-

munication.

DCE RPC Compiler

The DCE RPC compiler needs to be modified to

generate Tcl wrapper stubs for an arbitrary subset of

RPC interfaces. Past experience with writing Tcl inter-

faces to RPC-based applications has shown that much

of the developer’s time is spent on an almost rote pro-

cess of writing the wrappers/conversions between Tcl



strings and C-level RPC function call arguments. Gen-

erating these types of wrappers falls in line with the

RPC compiler’s normal task of generating marshaling

stubs. This modification should simplify extending

Tcl/Tk applications with DCE services.

Session Manager

The ‘‘Session Manager’’ (Tk-sm) is a framework

for cooperating desktop applications. It provides a

communication service that does not depend on X,

manages a name space of applications that is location

independent, and allows applications to request general

services. The Tk-sm is a Tcl/Tk application that has

been augmented with a set of DCE services. These ser-

vices allow the Tk-sm to register applications in the

DCE global name space. The DCE services also let the

Tk-sm act as a communication proxy, allowing Tcl/Tk

applications to communicate with Tcl/Tk applications

that are not attached to the same X display. Addition-

ally, the Tk-sm holds a user profile that contains a data-

base of the user’s favorite editor, what to do with cer-

tain file types, etc. The Tk-sm is able to use this profile

to execute generic service requests based on user prefer-

ences.

Upon user login, the Tk-sm registers itself in the

DCE global name space at a well known location, such

as /.../cell/user/normanb/Tk-sm (where

/.../ is the root of the DCE global name space and

cell/ describes the local administrative domain).

Tk-sm then creates and manages a name space of the

user’s applications. The Tk-sm uses this name space to

support location independent cooperative work, and to

provide communication services that are not X-based.

While some Tcl/Tk applications might be extended with

communication services provided by DCE, it is likely

that most will continue to rely on the current X-based

send mechanism. The Tk-sm can support these

‘‘naive’’ applications by creating ‘‘proxy interpreters’’

used to represent Tcl/Tk applications running on dif-

ferent X displays. Naive applications send to these

proxies, and the Tk-sm takes care of the remote

transmission using its DCE RPC services.

The name space is similar to Tk’s current X inter-

preter registry, looking something like:

/.../cell/user/normanb/Tk-sm/

edit paper.ms

Tk-sm

proxy-ric {edit paper.ms}

hq

ppres talk1

tk-window-manager

etc.

Name space entries might represent local applications,

binding points for applications that have been extended

with DCE, or proxies for remote applications. Because

proxy names are controlled by the local Tk-sm, there is

no risk of name space collisions. The framework sup-

ported by this name space allows applications to com-

municate in many different ways:

(a). As the Tk-sm is a Tcl/Tk application, naive

Tcl/Tk applications can continue to send to

each other and to the Tk-sm.

(b). Because the Tk-sm registers itself in the global

name space relative to a user’s principal, it is

location independent. This simplifies cooperative

work. Users who wish to communicate only need

to know each other’s principal, not the physical

host they happen to be working at that day.

(c). The Tk-sm coordinates cooperative work. The

name space acts as a rendezvous, either for appli-

cations that have been extended with an RPC

mechanism and the ability to query the name

space, or for naive applications through the proxy

mechanism.

Consider the case where another user, ric, and I

want to work together on a paper using the naive

application edit. Assume that edit com-

municates with multiple instances of itself by

using send to reflect changes in a shared docu-

ment. The Tk-sm would be used to establish

proxies, after which our name spaces look some-

thing like:

/.../cell/user/normanb/Tk-sm/

edit paper.ms

wish #2

hq

proxy-ric {edit paper.ms}

/.../cell/user/ric/Tk-sm

edit paper.ms

proxy-normanb {edit paper.ms}

wish #2

tutorial

As I use edit to make changes to the shared

document, edit behaves just as it normally

would by sending updates to the interpreter

proxy-ric {edit paper.ms}. My Tk-sm

intercepts those sends, marshals them in DCE

RPC, and transmits them to ric’s Tk-sm. His Tk-

sm then unmarshals the message and sends it to

his instance of edit paper.ms, which con-

tinues to behave just as it normally would. The

same process works in reverse when ric makes

changes.

Applications that have been extended with DCE

services would not have to rely on proxies, but

instead would use a subset of the services pro-



vided by the Tk-sm, such as the security and

profile features discussed below.

(d). The Tk-sm provides a platform for experimenting

with authentication and authorization. Along

with being a name space manager, the Tk-sm

could take advantage of the DCE security ser-

vices to act as an access control list (acl)

manager. This could range from a coarse, all-or-

nothing mechanism, to individual acl’s for indivi-

dual applications. At the minimum, it is easy to

imagine a system which allows a remote user to

‘‘knock’’ on my Tk-sm, and in response I would

grant or deny various permissions. If desired, any

communication between our applications could

take place over the DCE secure RPC. If the tar-

get application is knowledgeable about authenti-

cation and authorization, the Tk-sm could hand

off the remote user’s credentials and let the target

application manage its own acl’s.

(e). A user profile containing preferences for applica-

tions such as editors, debuggers, and drawing pro-

grams could be used to provide general services.

Rather than having to know which editor a partic-

ular user prefers, and how to make that editor

jump to a particular line, a debugger could make a

general request to the Tk-sm. This request would

be in some canonical form. The Tk-sm would

query its database, and either invoke a new editor

or send a message to an already running

instance. As described above, this would include

remote applications. For example, ric and I might

be using different editing applications. The Tk-

sm would then be used to translate from the

canonical editor messages to ones appropriate to

our individual preferences.

Conclusion

By integrating some aspects of Tcl/Tk with OSF’s

DCE, it should be possible to create a framework which

simplifies and extends the way desktop applications can

cooperate. As a start, I propose modifying the DCE

RPC compiler to generate Tcl wrappers, and creating a

‘‘Session Manager’’ to coordinate the interaction

between distributed applications. This session manager

would then be used as a framework for experimenting

with various cooperation mechanisms.


